Via the generating function method, let
[tex]G(x)=\displaystyle\sum_{n\ge0}a_nx^n[/tex]
Then take the recurrence,
[tex]a_n=6a_{n-1}-8a_{n-2}[/tex]
multiply everything by [tex]x^n[/tex] and sum over all [tex]n\ge2[/tex]:
[tex]\displaystyle\sum_{n\ge2}a_nx^n=6\sum_{n\ge2}a_{n-1}x^n-8\sum_{n\ge2}a_{n-2}x^n[/tex]
Re-index the sums or add/remove terms as needed in order to be able to express them in terms of [tex]G(x)[/tex]:
[tex]\displaystyle\sum_{n\ge2}a_nx^n=\sum_{n\ge0}a_nx^n-(a_0-a_1x)=G(x)-4-10x[/tex]
[tex]\displaystyle\sum_{n\ge2}a_{n-1}x^n=\sum_{n\ge1}a_nx^{n+1}=x\sum_{n\ge1}a_nx^n=x\left(G(x)-a_0\right)=x(G(x)-4)[/tex]
[tex]\displaystyle\sum_{n\ge2}a_{n-2}x^n=\sum_{n\ge0}a_nx^{n+2}=x^2\sum_{n\ge0}a_nx^n=x^2G(x)[/tex]
So the recurrence relation is transformed to
[tex]G(x)-4-10x=6x(G(x)-4)-8x^2G(x)[/tex]
[tex](1-6x+8x^2)G(x)=4-14x[/tex]
[tex]G(x)=\dfrac{4-14x}{1-6x+8x^2}=\dfrac{4-14x}{(1-4x)(1-2x)}=\dfrac1{1-4x}+\dfrac3{1-2x}[/tex]
For appropriate values of [tex]x[/tex], we can express the RHS in terms of geometric power series:
[tex]G(x)=\displaystyle\sum_{n\ge0}(4x)^n+3\sum_{n\ge0}(2x)^n=\sum_{n\ge0}\bigg(4^n+3\cdot2^n\bigg)x^n[/tex]
which tells us that
[tex]a_n=4^n+3\cdot2^n[/tex]