Respuesta :
[tex]f(x)=\dfrac{1}{4}(4)^x\\\\for\ x=1\to f(1)=\dfrac{1}{4}\cdot4^1=1\to(1;\ 1)\\\\for\ x=2\to f(2)=\dfrac{1}{4}\cdot4^2=\dfrac{1}{4}\cdot16=4\to(2;\ 4)[/tex]
Answer: The graph nr 4.
Other method:
[tex]f(x)=\dfrac{1}{4}\cdot4^x=4^{-1}\cdot4^x=4^{x-1}[/tex]
Used:
[tex]a^{-1}=\dfrac{1}{a}\\\\a^n\cdot a^m=a^{n\cdot m}[/tex]
Draw the graph of y = 4^x and next shift it 1 unit right.
Answer: The graph nr 4.
Other method:
[tex]f(x)=\dfrac{1}{4}\cdot4^x=4^{-1}\cdot4^x=4^{x-1}[/tex]
Used:
[tex]a^{-1}=\dfrac{1}{a}\\\\a^n\cdot a^m=a^{n\cdot m}[/tex]
Draw the graph of y = 4^x and next shift it 1 unit right.
Answer:
The correct option is D.
Step-by-step explanation:
Consider the provided function [tex]f(x)=\frac{1}{4}(4)^x[/tex]
Substitute x = 0 in the above function.
[tex]f(0)=\frac{1}{4}(4)^0[/tex]
[tex]f(0)=\frac{1}{4}[/tex]
Thus, the coordinate is (0,1/4).
Now substitute x = 1.
[tex]f(1)=\frac{1}{4}(4)[/tex]
[tex]f(1)=1[/tex]
Thus, the coordinate is(1,1).
Substitute x = 2.
[tex]f(2)=\frac{1}{4}(4)^2[/tex]
[tex]f(2)=\frac{1}{4}(16)[/tex]
[tex]f(2)=4[/tex]
Thus, the coordinate is (2,4)
Therefore, the correct option is D.