Respuesta :

the correct answer is
a) x=-8/3,-2

Answer:

Given the equation: [tex]3x^2+14x+16=0[/tex]

The general equation of quadratic formula for [tex]ax^2+bx+c=0[/tex] where a, b and c are constant;

then, the solution for this equation  is given by;

[tex] x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]              ......[1]

From the equation, [tex]3x^2+14x+16=0[/tex] we have

a =2, b=14 and c=16

Substitute these values in [1] to solve for x;

[tex] x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}=\frac{-14\pm\sqrt{(14)^2-4(3)(16)}}{2(3)}[/tex]              

or

[tex]x=\frac{-14\pm\sqrt{196-192}}{6} =\frac{-14\pm\sqrt{4}}{6}[/tex]

Simplify:

[tex]x=\frac{-14\pm\sqrt{4}}{6} =\frac{-14\pm 2}{6}[/tex]

then,

[tex]x=\frac{-14+2}{6} =\frac{-12}{6} =-2[/tex] and

[tex]x=\frac{-14-2}{6} =\frac{-16}{6} =\frac{-8}{3}[/tex]

Therefore, the solutions for the given equation is; x =-2 and [tex]x =-\frac{8}{3}[/tex]