Respuesta :
P = 2.30 atm
Volume in liter = 2.70 mL / 1000 => 0.0027 L
Temperature in K = 30.0 + 273 => 303 K
R = 0.082 atm
molar mass O2 = 31.9988 g/mol
number of moles O2 :
P * V = n * R* T
2.30 * 0.0027 = n * 0.082 * 303
0.00621 = n * 24.846
n = 0.00621 / 24.846
n = 0.0002499 moles of O2
Mass of O2:
n = m / mm
0.0002499 = m / 31.9988
m = 0.0002499 * 31.9988
m = 0.008 g
Volume in liter = 2.70 mL / 1000 => 0.0027 L
Temperature in K = 30.0 + 273 => 303 K
R = 0.082 atm
molar mass O2 = 31.9988 g/mol
number of moles O2 :
P * V = n * R* T
2.30 * 0.0027 = n * 0.082 * 303
0.00621 = n * 24.846
n = 0.00621 / 24.846
n = 0.0002499 moles of O2
Mass of O2:
n = m / mm
0.0002499 = m / 31.9988
m = 0.0002499 * 31.9988
m = 0.008 g
Using the ideal gas equation, the flashbulb contains 8 grams of oxygen gas ([tex]0_2[/tex]).
Given the following data:
- Volume = 2.70 mL
- Temperature = 30.0 °C
- Pressure = 2.30 atm
- Ideal gas constant, R = 0.0821L⋅atm/mol⋅K
First of all, we would convert the temperature to Kelvin:
[tex]Temperature \;in \;Kelvins = 273 \;+ C\\\\Temperature \;in \;Kelvins = 273 \;+ 30[/tex]
Temperature = 303 K
To find how many grams of [tex]0_2 \; (g)[/tex] the flashbulb contain, we would use the ideal gas law equation;
[tex]PV = nRT[/tex]
Where;
- P is the pressure.
- V is the volume.
- n is the number of moles of substance.
- R is the ideal gas constant.
- T is the temperature.
Making n the subject of formula, we have;
[tex]n = \frac{PV}{RT}[/tex]
Substituting the given parameters into the formula, we have;
[tex]n = \frac{2.30(2.70)}{0.0821(303)}\\\\n = \frac{6.21}{24.88}[/tex]
Number of moles, n = 0.25 moles.
Now, we would determine the mass:
- Molecular mass of oxygen gas ([tex]0_2[/tex]) = 32
[tex]Mass = n[/tex] × [tex]Molecular \; mass[/tex]
[tex]Mass = 0.25[/tex] × [tex]32[/tex]
Mass = 8 grams
Therefore, the flashbulb contains 8 grams of oxygen gas ([tex]0_2[/tex]).
Read more: https://brainly.com/question/24290885