High School Pre Cal

Sandra can run a mile in 6 minutes. At her high school track, shown below, 4 laps around the track equals 1 mile. If Sandra starts at point S, which parametric equations will find her position on the track at any time t in seconds?

High School Pre Cal Sandra can run a mile in 6 minutes At her high school track shown below 4 laps around the track equals 1 mile If Sandra starts at point S wh class=

Respuesta :

we know that
1) Sandra can run a mile in 6 minutes-------> 6*60-----> 360 sec
2) 4 laps around the track equals 1 mile
so
4 laps around the track in 360 sec
1 lap in 360/4--------> 90 sec
3) the position of Sandra for t=90 sec must be equal to the point S (0,56)
I proceed to analyze each case for t=90 sec

case a) x(t)=-140 cos(pi*t/45)    y(t)=112 sin(pi*t/45)
x(t)=-140 cos(pi*90/45)------> -140
y(t)=112 sin(pi*90/45)-------> 0
the position is the point (-140,0)------> is not the point S

case b) x(t)=140 sin(pi*t/90)  y(t)=-112 cos(pi*t/90)

x(t)=140 sin(pi*90/90)------> 0
y(t)=-112 cos(pi*90/90)-------> 112
the position is the point (0,112)------> is not the point S

case c) x(t)=-70 sin(pi*t/45)  y(t)=56 cos(pi*t/45)
x(t)=-70 sin(pi*90/45)------> 0
y(t)=56 cos(pi*90/45) -------> 56
the position is the point (0,56)------> is equal to the point S----> is the solution

case d) x(t)=70 cos(pi*t/90)  y(t)=-56 sin(pi*t/90)

x(t)=70 cos(pi*90/90)------> -70
y(t)=-56 sin(pi*90/90)-------> 0
the position is the point (-70,0)------> is not the point S

 therefore

the answer is the option C

x(t)=-70 sin(pi*t/45)  y(t)=56 cos(pi*t/45)