The position of an object as a function of time is given by x = bt 2 - ct, where b = 2.0 m/s2 and c = 6.7 m/s, and x and t are in si units. what is the instantaneous velocity of the object when t = 4.1

Respuesta :

Answer:

The instantaneous velocity of the object when t = 4.1 is 9.7 [tex]\frac{m}{s}[/tex].

Explanation:

Instantaneous velocity, v = [tex]\frac{dx}{dt}[/tex]

x = [tex]b t^{2} - ct[/tex]

v = [tex]\frac{dx}{dt}[/tex] = 2bt - c

At t = 4.1 s

v = 2 × b × 4.1 - c

b = 2.0 [tex]\frac{m}{s^{2} }[/tex]

c = 6.7 [tex]\frac{m}{s}[/tex] ...(Given)

v = 2 × 2 × 4.1 - 6.7

v = 9.7 [tex]\frac{m}{s}[/tex]

The instantaneous velocity of the object when t = 4.1 is 9.7 [tex]\frac{m}{s}[/tex].