Respuesta :

For this, simply find the width and length by finding the distance between the two points. This can be done using the equation [tex]\sqrt{(y2 - y1)^2 + (x2 - x1)^2}[/tex]

AB(length): [tex]\sqrt{(0 - 2)^2 + (3 - (-3))^2}[/tex]

--> [tex]\sqrt{-2^2 + 6^2}[/tex]

---> [tex]\sqrt{40}[/tex] = 6.32

BC(width): [tex]\sqrt{(2 - (-1))^2 + (4 - 3)^2[/tex]

--> [tex]\sqrt{(2 + 1)^2 + 1^2}[/tex]

---> [tex]\sqrt{27 + 1}[/tex]

----> [tex]\sqrt{28}[/tex] = 5.29 ≈ 5.3

Area = 33.496 ≈ 33.5