Respuesta :
the answer is the Square root 59
i just i got the answer right
Answer:
[tex]\sqrt{59}[/tex]
Step-by-step explanation:
Given : Length of cuboid = 3 units
Width of cuboid = 5 units
Height of cuboid = 5 units
To Find : Length of diagonal of cuboid
Solution :
Formula of length of cuboid = [tex]\sqrt{(Length)^{2} +(Width)^{2}+(Height) ^{2} }[/tex]
So, Length of diagonal of cuboid :
= [tex]\sqrt{3^{2} +5^{2}+5^{2} }[/tex]
= [tex]\sqrt{9 +25+25 }[/tex]
= [tex]\sqrt{59}[/tex]
Thus , Length of diagonal of cuboid is [tex]\sqrt{59}units[/tex].
Hence , The diagonal of the rectangular solid is [tex]\sqrt{59}units[/tex].