First, turn the fraction [tex]1\dfrac{7}{8}[/tex] into the fraction [tex]\dfrac{15}{8}.[/tex]
The numerator 15 has divisors: 1, 3, 5, 15.
The denominator 8 has divisors: 1, 2, 4, 8.
All possible factors of [tex]\dfrac{15}{8}[/tex] are:
- 1 and [tex]\dfrac{15}{8}[/tex] -- [tex]1\cdot \dfrac{15}{8}=\dfrac{15}{8}=1\dfrac{7}{8};[/tex]
- 3 and [tex]\dfrac{5}{8}[/tex] -- [tex]3\cdot \dfrac{5}{8}=\dfrac{15}{8}=1\dfrac{7}{8};[/tex]
- 5 and [tex]\dfrac{3}{8}[/tex] -- [tex]5\cdot \dfrac{3}{8}=\dfrac{15}{8}=1\dfrac{7}{8};[/tex]
- 15 and [tex]\dfrac{1}{8}[/tex] -- [tex]15\cdot \dfrac{1}{8}=\dfrac{15}{8}=1\dfrac{7}{8};[/tex]
- [tex]\dfrac{1}{2}[/tex] and [tex]\dfrac{15}{4}[/tex] -- [tex]\dfrac{1}{2}\cdot \dfrac{15}{4}=\dfrac{15}{8}=1\dfrac{7}{8};[/tex]
- [tex]\dfrac{3}{2}[/tex] and [tex]\dfrac{5}{4}[/tex] -- [tex]\dfrac{3}{2}\cdot \dfrac{5}{4}=\dfrac{15}{8}=1\dfrac{7}{8};[/tex]
- [tex]\dfrac{5}{2}[/tex] and [tex]\dfrac{3}{4}[/tex] -- [tex]\dfrac{5}{2}\cdot \dfrac{3}{4}=\dfrac{15}{8}=1\dfrac{7}{8};[/tex]
- [tex]\dfrac{15}{2}[/tex] and [tex]\dfrac{1}{4}[/tex] -- [tex]\dfrac{15}{2}\cdot \dfrac{1}{4}=\dfrac{15}{8}=1\dfrac{7}{8}.[/tex]
Also you can consider both negative factors. There will be 8 different combinations (the same as previous, only add sign -) of product.