Respuesta :
[tex]\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \sqrt{c^2-a^2}=b \qquad \begin{cases} c=\stackrel{hypotenuse}{\stackrel{3959+5.9}{3964.9}}\\ a=\stackrel{adjacent}{3959}\\ b=\stackrel{opposite}{x}\\ \end{cases} \\\\\\ \sqrt{3964.9^2-3959^2}=x\implies \sqrt{46751.01}=x\implies 216.22\approx x[/tex]
Answer:
Step-by-step explanation:
Formula
a^2 + b^2 = c^2
Remark
The horizon point is where x and 3959 meet.
Givens
a = 3959
b = x
c =3959 + 5.9 = 3964.9
Solution
3959^2 + x^2 = 3964.9 ^2
15673681 + x^2 = 15720432.01 Subtract 15673681 from both sides
x^2 = 15720432.01 - 15673681 Combine
x^2 =46751.01 Take the square root of both sides
sqrt(x^2) = sqrt(46751.01)
x = 216.2
If you round anywhere but at the end, an error will creep in that will make your answer incorrect.