Respuesta :

Answer:

D

Step-by-step explanation:

The function is f(x)=13x. To find the point on the graph, we substitute a corrdinate pair (x,f(x)) into the equation. When we substitute D (-1,-13), we find:

x=-1    f(x)=-13

-13=13(-1)

-13=-13.

(-1,-13) is on the graph.


Answer:

B and C

Step-by-step explanation:

We are given that a function

[tex]f(x)=(\frac{1}{3})^x[/tex]

A.(3,27)

Substitute x=3

[tex]f(3)=(\frac{1}{3})^3=\frac{1}{27}[/tex]

[tex](3,27)\neq (3,1/27)[/tex]

Hence, it  is not true.

B.(-2,9)

Substitute x=-2

[tex]f(-2)=(\frac{1}{3})^{-2}=3^2=9[/tex]

By using identity [tex]\frac{1}{a^x}=a^{-x}[/tex]

Therefore, point(-2,9) lies on the given graph.

Hence, it is true.

C.(0,1)

Substitute x=0

[tex]f(0)=(\frac{1}{3})^0=1[/tex]

By using [tex]a^0=1[/tex]

Hence, it is true.

D.(-1,-13)

Substitute x=-1

[tex]f(-1)=(\frac{1}{3})^{-1}=3[/tex]

Hence, the point (-1,-13) does not lie on the graph.