Respuesta :
Answer:
D
Step-by-step explanation:
The function is f(x)=13x. To find the point on the graph, we substitute a corrdinate pair (x,f(x)) into the equation. When we substitute D (-1,-13), we find:
x=-1 f(x)=-13
-13=13(-1)
-13=-13.
(-1,-13) is on the graph.
Answer:
B and C
Step-by-step explanation:
We are given that a function
[tex]f(x)=(\frac{1}{3})^x[/tex]
A.(3,27)
Substitute x=3
[tex]f(3)=(\frac{1}{3})^3=\frac{1}{27}[/tex]
[tex](3,27)\neq (3,1/27)[/tex]
Hence, it is not true.
B.(-2,9)
Substitute x=-2
[tex]f(-2)=(\frac{1}{3})^{-2}=3^2=9[/tex]
By using identity [tex]\frac{1}{a^x}=a^{-x}[/tex]
Therefore, point(-2,9) lies on the given graph.
Hence, it is true.
C.(0,1)
Substitute x=0
[tex]f(0)=(\frac{1}{3})^0=1[/tex]
By using [tex]a^0=1[/tex]
Hence, it is true.
D.(-1,-13)
Substitute x=-1
[tex]f(-1)=(\frac{1}{3})^{-1}=3[/tex]
Hence, the point (-1,-13) does not lie on the graph.