Respuesta :

Answer:

PR = 17 cm


Step-by-step explanation:

Given  :

In ΔPQR,

PQ = 39 cm

PN is an altitude.

QN = 36 cm

RN = 8 cm.

To Find : Length of PR

Solution :

Since we are given that PN is an altitude .

So, PN divides ΔPQR in two right angled triangles named as ΔPQN and ΔPRN. (Refer attached file)

So, first we find Length of PN in ΔPQN using Pythagoras theorem i.e.

[tex](Hypotenuse)^{2}=(Perpendicular)^{2} +(Base)^{2}[/tex]

[tex](PQ)^{2}=(PN)^{2} +(QN)^{2}[/tex]

[tex](39)^{2}=(PN)^{2} +(36)^{2}[/tex]

[tex]1521=(PN)^{2} +1296[/tex]

[tex]1521 -1296=(PN)^{2} [/tex]

[tex]225=(PN)^{2} [/tex]

[tex]\sqrt{225} = PN[/tex]

[tex]15 = PN[/tex]

Thus, Length of PN = 15cm

Now to find length of PR we will use Pythagoras theorem in ΔPRN.

[tex](PR)^{2}=(PN)^{2} +(NR)^{2}[/tex]

[tex](PR)^{2}=(15)^{2} +(8)^{2}[/tex]

[tex](PR)^{2}=225 +64[/tex]

[tex](PR)^{2}=289[/tex]

[tex] PR= \sqrt{289} [/tex]

[tex] PR= 17 [/tex]

Hence the length of PR = 17 cm



Ver imagen Phoca