Respuesta :

Answer:

f(x) = [tex]4^{(\sqrt[3]{64} )^{2x}}[/tex].

Step-by-step explanation:

We are given functions

[tex]f(x) = 2^{(\sqrt[3]{16} )}[/tex]

f(x) = [tex]2^{(\sqrt[3]{64} )}[/tex]

f(x) = [tex]4{(\sqrt[3]{12})^{2x}}[/tex]

f(x) = [tex]4^{(\sqrt[3]{64} )^{2x}}[/tex].

We need to find the function with simplified base of 4.

Let us simplify each of the function one by one.

On simplifying exponent in[tex]2^{(\sqrt[3]{16} )}[/tex], we get [tex]2^{(2\sqrt[3]{2} )}[/tex].

On simplifying exponent in [tex]2^{(\sqrt[3]{64} )}[/tex] we get 2^{4}.

On simplifying [tex]4{(\sqrt[3]{12})^{2x}}[/tex] we get [tex]4\left(\sqrt[3]{12}\:\:\right)\left(\sqrt[3]{12}\:\:\right)^x=4\left(\sqrt[3]{12\cdot 12}\right)\:^x=4\left(2\sqrt[3]{18}\right)^x[/tex].

On simplifying [tex]4^{(\sqrt[3]{64} )^{2x}}[/tex] we get [tex]4^{\left(\sqrt[3]{64}\:\right)^{2x}}=4^{\left(4\:\right)^{2x}}=\:4^{16^x}.[/tex]

Therefore, fourth function f(x) = [tex]4^{(\sqrt[3]{64} )^{2x}}[/tex] has simplified base 4.




Answer:

c is your answer just took the quiz

Step-by-step explanation: