Respuesta :

Answer:   [tex]\bold{x = -4\pm \sqrt{29}}[/tex]

Step-by-step explanation:

Step 1: Create a perfect square:  Add the value to both sides

x² + 8x +  16   = 13 +  16  

       ↓       ↑                 ↑

      [tex]\dfrac{8}{2} = (4)^2[/tex]

Step 2: Factor left side so it is a perfect square and simplify right side:

[tex](x + 4)^2 = 29[/tex]

Step 3: Take the square root of both sides

[tex]x + 4 = \pm \sqrt{29}[/tex]

Step 4: Solve for x:

[tex]x = -4\pm \sqrt{29}[/tex]

Answer:

x = - 4 ± [tex]\sqrt{29}[/tex]

Step-by-step explanation:

the coefficient of the x² term is 1 as required

to complete the square

add (half the coefficient of the x-term )² to both sides

x² +2(4)x + 16 = 13 + 16

(x + 4)² = 29 ( take the square root of both sides )

x + 4 = ± [tex]\sqrt{29}[/tex] ← note plus or minus

subtract 4 from both sides

x = - 4 ± [tex]\sqrt{29}[/tex] ← exact solutions