Respuesta :

Answer:

(1)

[tex]f(x)=3(\frac{1}{3})^x[/tex]

[tex]g(x)=3(\frac{3}{4})^x[/tex]

(2)

[tex](8x-9-2x)(15+5x-5)=30x^2+15x-90[/tex]

(3)

[tex](x-8)^2=52[/tex]

Step-by-step explanation:

(1)

Calculation of f(x):

we can use exponential function formula

[tex]f(x)=a(b)^x[/tex]

we can select any two points to find 'a' and 'b

At x=0 , y=3:

we  can plug values

[tex]f(0)=a(b)^0[/tex]

[tex]3=a(b)^0[/tex]

[tex]a=3[/tex]

now, we can plug it back

[tex]f(x)=3(b)^x[/tex]

At x=-1 , y=9:

[tex]f(-1)=3(b)^{-1}[/tex]

[tex]9=3(b)^{-1}[/tex]

[tex]b=\frac{1}{3}[/tex]

now, we can plug it back

[tex]f(x)=3(\frac{1}{3})^x[/tex]

Calculation of g(x):

we can use exponential function formula

[tex]g(x)=a(b)^x[/tex]

we can select any two points to find 'a' and 'b

At x=0 , y=3:

we  can plug values

[tex]f(0)=a(b)^0[/tex]

[tex]3=a(b)^0[/tex]

[tex]a=3[/tex]

now, we can plug it back

[tex]g(x)=3(b)^x[/tex]

At x=1 , y=4:

[tex]g(1)=3(b)^{1}[/tex]

[tex]4=3(b)^{-1}[/tex]

[tex]b=\frac{3}{4}[/tex]

now, we can plug it back

[tex]g(x)=3(\frac{3}{4})^x[/tex]


(2)

we are given

[tex](8x-9-2x)(15+5x-5)[/tex]

we can combine like terms

[tex](8x-2x-9)(5x+15-5)[/tex]

[tex](6x-9)(5x+10)[/tex]

we can distribute it

[tex]=6x\cdot \:5x+6x\cdot \:10+\left(-9\right)\cdot \:5x+\left(-9\right)\cdot \:10[/tex]

[tex]=6\cdot \:5xx+6\cdot \:10x-9\cdot \:5x-9\cdot \:10[/tex]

[tex]=30x^2+15x-90[/tex]

(3)

we are given

[tex]x^2-16x+12=0[/tex]

Subtract both sides by 12

[tex]x^2-16x+12-12=0-12[/tex]

[tex]x^2-16x=-12[/tex]

We can complete square

[tex]x^2-2\times 8\times x=-12[/tex]

we can add 8^2 both sides

[tex]x^2-2\times 8\times x+8^2=-12+8^2[/tex]

[tex](x-8)^2=-12+8^2[/tex]

[tex](x-8)^2=-12+64[/tex]

[tex](x-8)^2=52[/tex]