Answer:
1 and [tex]8^{-1}[/tex]
Step-by-step explanation:
using the rules of exponents
• [tex](a^m)^{n}[/tex] = [tex]a^{mn}[/tex]
• [tex]a^{m}[/tex] × [tex]a^{n}[/tex] = [tex]a^{(m+n)}[/tex]
• [tex]\frac{a^{m} }{a^{n} }[/tex] = [tex]a^{(m-n)}[/tex]
given [tex](8^3)^{4}[/tex] × [tex]8^{-9}[/tex] / [tex]8^{3}[/tex]
= ([tex]8^{12}[/tex] × [tex]8^{-9}[/tex] ) / [tex]8^{3}[/tex]
= [tex]\frac{8^{12+(-9)} }{8^{3} }[/tex] = [tex]\frac{8^{3} }{8^{3} }[/tex] = 1
given ([tex]8^{3}[/tex] × [tex]8^{4}[/tex]) / [tex](8^2)^{4}[/tex]
= [tex]\frac{8^{(3+4)} }{8^{8} }[/tex]
= [tex]\frac{8^{7} }{8^{8} }[/tex]
= [tex]8^{(7-8)}[/tex] = [tex]8^{-1}[/tex]