The function f(x) = 1/6(2/5)^x is reflected across the y-axis to create the function g(x). Which ordered pair is on g(x)?
a.(-3, 4/375)
b.(-2, 25/24)
c.(2, 2/75)
d.(3, -125/48)

PLEASE EXPLAIN IF YOU CAN!

Respuesta :

The function f(x) = 1/6(2/5)^x  is reflected across the y-axis to create the function g(x). Which ordered pair is on g(x)?A (-3, 4/375)- is right 
B (-2, 25/24)-wrong 
C (2,2/75)-wrong
D (3,-125/48)-wrong

Answer:

(-3, 4/375)

Step-by-step explanation:

Given : The function [tex]f(x) = \frac{1}{6}(\frac{2}{5})^x[/tex] is reflected across the y-axis to create the function g(x).

To Find:  Which ordered pair is on g(x)?

Solution:

Rule of reflection over y axis : (x,y)→(-x,y)

So, when the function [tex]f(x) = \frac{1}{6}(\frac{2}{5})^x[/tex] is reflected across the y-axis

So, we obtain a function : [tex]f(-x) = \frac{1}{6}(\frac{2}{5})^{-x}[/tex]

So, [tex]g(x) = \frac{1}{6}(\frac{2}{5})^{-x}[/tex]

Now substitute the given options to check which satisfies the equation.

a.(-3, 4/375)

[tex]\frac{4}{375}= \frac{1}{6}(\frac{2}{5})^{-(-3)}[/tex]

[tex]\frac{4}{375}= \frac{4}{375}[/tex]

Thus Option A lies on g(x)

b.(-2, 25/24)

[tex]\frac{25}{24}= \frac{1}{6}(\frac{2}{5})^{-(-2)}[/tex]

[tex]\frac{25}{24}\neq \frac{2}{75}[/tex]

c.(2, 2/75)

[tex]\frac{2}{75}= \frac{1}{6}(\frac{2}{5})^{-(2)}[/tex]

[tex]\frac{25}{24}\neq \frac{25}{24}[/tex]

d.(3, -125/48)

[tex]\frac{-125}{48}= \frac{1}{6}(\frac{2}{5})^{3}[/tex]

[tex]\frac{-125}{48}\neq \frac{125}{48}[/tex]

So, option A is true

(-3, 4/375) lies on g(x)