Respuesta :

Answer:

Given the expression: [tex](27)^{\frac{1}{5}}[/tex]

Using the rule of radical and exponent power:

[tex]\sqrt[n]{x} =x^{\frac{1}{n}}[/tex]

We can write 27 as:

[tex]27 = 3 \cdot 3 \cdot 3 = 3^3[/tex]

Then;

[tex](27)^{\frac{1}{5}}[/tex]

⇒[tex](3^3)^{\frac{1}{5}}[/tex]

⇒[tex](3)^{\frac{3}{5}}[/tex]

Apply the rule:

[tex]\sqrt[5]{3^3}[/tex]

Therefore, the radical expression that is equivalent to the expression [tex](27)^{\frac{1}{5}}[/tex] is [tex]\sqrt[5]{3^3}[/tex]