Step-by-step explanation:
Question#7: Given the point is (2, -3). So x = 2, y = -3.
r = √(x²+y²) = √(4+9) = √13.
x = r cos∅, and y = r sin∅.
cos∅ = x/r = 2/√13 = (2√13)/13.
sin∅ = y/r = -3/√13 = (-3√13)/13.
tan∅ = y/x = -3/2.
cot∅ = x/y = 2/(-3) = -2/3.
sec∅ = r/x = (√13)/2.
csc∅ = r/y = (√13)/(-3) = (-√13)/3.
Question#8: Given the point is (-3, -2). So x = -3, y = -2.
r = √(x²+y²) = √(9+4) = √13.
x = r cos∅, and y = r sin∅.
sec∅ = r/x = (√13)/(-3) = (-√13)/3.
sec∅ = (-√13)/3.