Given (1+cosx)/(sinx) + (sinx)/(1+cosx) =4, find a numerical value of one trigonometric function of x.

a. tanx=2
b. sinx=2
c. tanx=1/2
d. sinx=1/2

Respuesta :

Answer:

[tex]sin(x)=\frac{1}{2}[/tex]

Step-by-step explanation:

we are given

[tex]\frac{1+cos(x)}{sin(x)}+\frac{sin(x)}{1+cos(x)} =4[/tex]

We will make common denominator

[tex]\frac{(1+cos(x))\times (1+cos(x))}{(sin(x))\times (1+cos(x))}+\frac{sin(x)\times sin(x)}{(1+cos(x))\times sin(x)} =4[/tex]

now, we can simplify it

[tex]\frac{1+cos^2(x)+2cos(x)+sin^2(x)}{(sin(x))\times (1+cos(x))}=4[/tex]

[tex]\frac{2+2cos(x)}{(sin(x))\times (1+cos(x))}=4[/tex]

[tex]\frac{2(1+cos(x))}{(sin(x))\times (1+cos(x))}=4[/tex]

now, we can cancel it

[tex]\frac{2}{sin(x)}=4[/tex]

[tex]\frac{2}{4}=sin(x)[/tex]

we can simplify it

and we get

[tex]sin(x)=\frac{1}{2}[/tex]


Answer:

D

Step-by-step explanation:

Edge2021