Respuesta :

Answer:

[tex]z = 15[\frac{\sqrt{3}}{2}][/tex]

Step-by-step explanation:

To find the Z-side, we must take the cosine of the 30-degree angle of the main triangle

We know that the cosine of an angle is defined as:

[tex]cos(30) = \frac{adjacent\ side}{hypotenuse}[/tex]

[tex]cos(30) = \frac{\sqrt{3}}{2}[/tex]

[tex]\frac{\sqrt{3}}{2}} = \frac{z}{15}[/tex]

Then:

[tex]z = 15[\frac{\sqrt{3}}{2}}][/tex]

Finalmente the side z is:

[tex]z = 15[\frac{\sqrt{3}}{2}}][/tex]

Answer:

Answers are :

x = 7.5 , y = [tex]\frac{15\sqrt{3} }{4}[/tex] , z = [tex]\frac{15\sqrt{3} }{2}[/tex]

a = 9.375 and b = 5.625

Step-by-step explanation:

From the attached figure , consider right triangle ABC.

∠B = 60°  , BC = 15  {∵ BC = a + b}

We need to find AC = z

Using sin function,

i.e sin(60°) = [tex]\frac{AC}{BC}[/tex]

or sin(60°) = [tex]\frac{AC}{15}[/tex]

or AC = 15×sin(60°)

or AC = [tex]\frac{15\sqrt{3} }{2}[/tex]

Also, AB = x = 15×cos(60°) = [tex]\frac{15}{2} = 7.5[/tex]

Next,

Consider right triangle ADC

AD = y, AC = z = [tex]\frac{15\sqrt{3} }{2}[/tex]

∠C = 30°

Using sin function to get y.

i.e sin(30°) = [tex]\frac{AD}{AC} = \frac{y}{z}[/tex]

or sin(30°) = \frac{y}{[tex]\frac{15\sqrt{3} }{2}[/tex]}[/tex]

or y = [tex]\frac{15\sqrt{3} }{2}[/tex]×sin(30°)

or y = [tex]\frac{15\sqrt{3} }{4}[/tex]

Also, DC = b = [tex]\frac{15\sqrt{3} }{2}[/tex]×cos(30°)

b = [tex]\frac{45}{8} = 5.625[/tex]

Therefore, a= 15 - b = 15 - 5.625 = 9.375

Hence we got,

x = 7.5 , y = [tex]\frac{15\sqrt{3} }{4}[/tex] , z = [tex]\frac{15\sqrt{3} }{2}[/tex]

a = 9.375 and b = 5.625

Ver imagen Alleei