Answer:
The slant height of the pyramid is [tex]9\ in[/tex]
Step-by-step explanation:
we know that
The lateral area of the square base pyramid is equal to
[tex]LA=4(\frac{1}{2}(b)(L))[/tex]
where
b is the length side of the base
L is the slant height of the pyramid
we have
[tex]LA=270\ in^{2}[/tex]
[tex]b=15\ in[/tex]
substitute the values and solve for L
[tex]270=4(\frac{1}{2}(15)(L))[/tex]
[tex]270=30(L)[/tex]
[tex]L=270/30=9\ in[/tex]