11 POINTS PLZ HELP EMERGENCY

2 questions plz show steps


1. simplify the complex number expression and leave in standard form:

-5(1+2i)+3i(3-4i)

Answer;

2. consider the imaginary numbers

(a) What makes the following an imaginary number?

Square root -50

(b) Simplify the expression below completely.

Square root -50/ Square root 5

(c) Whats does i^22 equal


Thank you so much I can't express how much it means to me :D

Respuesta :

Part A

The given expression is:

[tex](-5(1+2i)+3i(3-4i)[/tex]

We expand to get:

[tex]-5-10i+9i-12i^2[/tex]

Note that [tex]i^2=-1[/tex]

[tex]12-5-10i+9i[/tex]

[tex]-5-10i+9i+12[/tex]

[tex]7-i[/tex]

Part Bi)

The given expression is;

[tex]\sqrt{-50}[/tex]

We simplify to get:

[tex]\sqrt{25\times 2\times -1}[/tex]

[tex]\sqrt{25\times} \sqr{2}\times \sqrt{-1}[/tex]

Note that:

[tex]\sqrt{-1}=i[/tex]

[tex]5\sqr{2}i[/tex]

This is now of the form [tex]a+bi[/tex], where [tex]a=0,b=5\sqr{2}[/tex].

This explains why it is a complex number;

Part bii)

The given expression is :

[tex]\frac{\sqrt{-50} }{\sqrt{5}}[/tex]

We simplify to get

[tex]\sqrt{\frac{-50 }{5}}[/tex]

[tex]\sqrt{-25}[/tex]

[tex]\sqrt{-25}=\sqrt{25}\times \sqrt{-1}[/tex]

[tex]\sqrt{-25}=5\times i[/tex]

[tex]\sqrt{-25}=5i[/tex]

Part C

We want to simplify:

[tex]i^{22}[/tex]

We rewrite in terms of [tex]i^2[/tex]

[tex]i^{22}=(i^2)^{11}[/tex]

[tex]i^{22}=(-1)^{11}[/tex]

[tex]i^{22}=-11[/tex]