Respuesta :
Answer:
The answer is A
[tex]x=\frac{1+i\sqrt{143} }{8}[/tex] and [tex]x=\frac{1-i\sqrt{143} }{8}[/tex]
Step-by-step explanation:
∵ 4x² - x + 9 = 0 ⇒ is quadratic equation
∴ [tex]x=\frac{-b+\sqrt{b^{2}-4ac } }{2a}[/tex]
∴ [tex]x=\frac{-b-\sqrt{b^{2}-4ac } }{2a}[/tex]
Where a is the cooficient of x² , b is the cooficient of x and c is the numerical term
∵ a = 4 , b = -1 and c = 9
∴ [tex]x=\frac{-(-1)+\sqrt{(-1)^{2}-4(4)(9) } }{2(4)} =\frac{1+\sqrt{1-144} }{8}[/tex]
[tex]=\frac{1+\sqrt{-143} }{8}=\frac{1+i\sqrt{143} }{8}[/tex]⇒ i = √(-1)
∴ [tex]x=\frac{1-i\sqrt{143} }{8}[/tex]
∴The solutions are:
x=[tex]\frac{1+i\sqrt{143} }{8}[/tex] and x=[tex]\frac{1-i\sqrt{143} }{8}[/tex]
Answer:
Choice A is correct answer.
Step-by-step explanation:
We have given a quadratic equation.
4x²-x+9 = 0
We have to find the solution of given equation.
We use following quadratic formula to find the solution.
x = (-b±√b²-4ac) / 2a
In given equation, a = 4 , b = -1 and c = 9
Putting given values in quadratic formula, we have
x = (-(-1)±√(-1)²-4(4)(9) ) / 2(4)
x = (1±√1-144) / 8
x = (1±√-143 ) / 8
x = (1±√-1√143) / 8 ∵ i = √-1
x = (1±√143i) / 8
hence,The solutions are (1+√143)/8 and (1-√143)/8.