Respuesta :

Answer:

[tex]90\pi in^2[/tex]

Step-by-step explanation:

The lateral  area of the cylinder is given by;

[tex]A_L=2\pi rh[/tex]

The radius of the cylinder is [tex]r=5in.[/tex] and the height is [tex]r=9in.[/tex]

Substitute the values to get;

[tex]A_L=2\pi \times 5\times 9[/tex]

[tex]A_L=90\pi in^2[/tex]

Answer:

The correct answer option is 90[tex]\pi inches^2[/tex].

Step-by-step explanation:

We are given a cylinder with a radius of 5 inches and a height of 9 inches and we are to find the lateral area of this cylinder.

We know that the formula of the lateral area of a cylinder is given by:

Lateral area of cylinder = [tex] 2 \pi r h [/tex]

Substituting the given values in the formula to get:

Lateral Area = [tex]2\pi *5*9[/tex] = 90[tex]\pi inches^2[/tex]