Respuesta :

Answer: [tex]b=\sqrt{c^{2}-a^{2}}[/tex]

Step-by-step explanation:

To solve the exercise you must solve for b from the formula for the hypotenuse, as you can see below:

- Square both sides of the equation as following:

[tex]c^{2}=(\sqrt{a^{2}+b^{2}})^{2}[/tex]

- Now you must subtract a² from each side of the equation, then you obtain:

[tex]c^2-a^{2}=a^{2}-a^{2}+b^{2}[/tex]

[tex]c^2-a^{2}=b^{2}[/tex]

- Apply square root to both sides:

[tex]\sqrt{b^{2}}=\sqrt{c^{2}-a^{2}}[/tex]

Then:

[tex]b=\sqrt{c^{2}-a^{2}}[/tex]

Answer:

see explanation

Step-by-step explanation:

Given

c = [tex]\sqrt{a^2+b^2}[/tex]

Square both sides

c² = a² + b² ( subtract a² from both sides )

c² - a² = b² ( take the square root of both sides )

[tex]\sqrt{c^2-a^2}[/tex] = b

⇒ b = [tex]\sqrt{c^2-a^2}[/tex]