Respuesta :
Answer: [tex]b=\sqrt{c^{2}-a^{2}}[/tex]
Step-by-step explanation:
To solve the exercise you must solve for b from the formula for the hypotenuse, as you can see below:
- Square both sides of the equation as following:
[tex]c^{2}=(\sqrt{a^{2}+b^{2}})^{2}[/tex]
- Now you must subtract a² from each side of the equation, then you obtain:
[tex]c^2-a^{2}=a^{2}-a^{2}+b^{2}[/tex]
[tex]c^2-a^{2}=b^{2}[/tex]
- Apply square root to both sides:
[tex]\sqrt{b^{2}}=\sqrt{c^{2}-a^{2}}[/tex]
Then:
[tex]b=\sqrt{c^{2}-a^{2}}[/tex]
Answer:
see explanation
Step-by-step explanation:
Given
c = [tex]\sqrt{a^2+b^2}[/tex]
Square both sides
c² = a² + b² ( subtract a² from both sides )
c² - a² = b² ( take the square root of both sides )
[tex]\sqrt{c^2-a^2}[/tex] = b
⇒ b = [tex]\sqrt{c^2-a^2}[/tex]