Respuesta :

Make use of the known limit,

[tex]\displaystyle\lim_{x\to0}\frac{\sin x}x=1[/tex]

We have

[tex]\displaystyle\lim_{x\to0}\frac{e^x\sin x\tan x}{x^2}=\left(\lim_{x\to0}\frac{e^x}{\cos x}\right)\left(\lim_{x\to0}\frac{\sin^2x}{x^2}\right)[/tex]

since [tex]\tan x=\dfrac{\sin x}{\cos x}[/tex], and the limit of a product is the same as the product of limits.

[tex]\dfrac{e^x}{\cos x}[/tex] is continuous at [tex]x=0[/tex], and [tex]\dfrac{e^0}{\cos 0}=1[/tex]. The remaining limit is also 1, since

[tex]\displaystyle\lim_{x\to0}\frac{\sin^2x}{x^2}=\left(\lim_{x\to0}\frac{\sin x}x\right)^2=1^2=1[/tex]

so the overall limit is 1.