Respuesta :

Let [tex]\alpha=3\theta[/tex], so that [tex]\mathrm d\alpha=3\,\mathrm d\theta[/tex].

[tex]\displaystyle\int\sec^23\theta\,\mathrm d\theta=\frac13\int\sec^2\alpha\,\mathrm d\alpha[/tex]

Recall that

[tex]\dfrac{\mathrm d}{\mathrm d\alpha}\tan\alpha=\sec^2\alpha[/tex]

so we get the antiderivative

[tex]\dfrac13\tan\alpha+C[/tex]

and back-substitute to get it in terms of [tex]\theta[/tex]:

[tex]\dfrac13\tan3\theta+C[/tex]