Graph the following equation

[tex]f(x) = \frac{(2x+3)(x-6)}{(x+2)(x-1)}[/tex]

If you can. Also, what is the Oblique Asymptote.

Respuesta :

Answer:

Graphic attached

Step-by-step explanation:

The oblique asymptote of the function has the shape of a line of the form

[tex]y = mx + b[/tex]

We need to find the slope m and the intercept b.

The oblique asymptote is found by these two limits:

[tex]m = \lim_{x \to \infty}\frac{f(x)}{x}\\\\b = \lim_{x \to \infty}[f(x) - mx][/tex]

If [tex]f(x) = \frac{(2x+3)(x-6)}{(x+2)(x-1)}[/tex] then:

[tex]m = \lim_{x \to \infty} \frac{\frac{(2x+3)(x-6)}{(x+2)(x-1)}}{x}\\\\m = \lim_{x \to \infty} \frac{2x^2-9x-18}{x^3 +x^2 -2x}\\\\m = 0[/tex]

The slope is 0. Therefore the function has no oblique asymptote.

Horizontal asymptote:

[tex]y = 2[/tex]

Vertical asymptote

[tex]x = -2\\x = 1[/tex]

Ver imagen carlosego