Respuesta :
Answer: first option.
Step-by-step explanation:
Find the common difference d of the arithmetic sequence:
[tex]d=a_n-a_{(n-1)}\\d=989-997\\d=-8[/tex]
Then the formula for the 101st term is the shown below:
[tex]a_n=a_1+(n-1)d[/tex]
Where:
[tex]a_1=997\\d=-8\\n=101[/tex]
Substitute values into the formula. Therefore, you obtain:
[tex]a_n=997+(101-1)(-8)=197[/tex]
Answer:
[tex]a_{101}=197[/tex]
Step-by-step explanation:
The first term of the sequence is
[tex]a_1=997[/tex]
The given sequence is 997, 989, 981, ...
The common difference is
[tex]d=989-997=-8[/tex]
The nth ter of the sequence is
[tex]a_n=a_1+d(n-1)[/tex]
We plug in the first term and the common ratio to obtain;
[tex]a_n=997-8(n-1)[/tex]
[tex]a_n=997-8n+8[/tex]
[tex]a_n=1005-8n[/tex]
We substitute n=101 to get;
[tex]a_{101}=1005-8(101)[/tex]
[tex]a_{101}=197[/tex]