Respuesta :

Answer:

x     y

-2   7

-1    10.5

0    15.75

1     23.625

2    35.4375

Step-by-step explanation:

The general equation of the exponential function is [tex]y=ab^x[/tex].

We know from our table that when [tex]x=0[/tex], [tex]y=15.75[/tex]. Let's replace those values in our equation:

[tex]y=ab^x[/tex]

[tex]15.75=ab^0[/tex]

Remember that [tex]b^0=1[/tex], so:

[tex]15.75=a(1)[/tex]

[tex]15.75=a[/tex]

[tex]a=15.75[/tex]

We also know from our table that when [tex]x=-1[/tex], [tex]y=10.5[/tex]. Let's replace the values again:

[tex]y=ab^x[/tex]

[tex]10.5=ab^{-1}[/tex]

But we now know that [tex]a=15.75[/tex], so let's replace that value as well:

[tex]10.5=15.75b^{-1}[/tex]

Remember that [tex]b^{-1}=\frac{1}{b}[/tex], so:

[tex]10.5=\frac{15.75}{b}[/tex]

[tex]10.5b=15.75[/tex]

[tex]b=\frac{15.75}{10.5}[/tex]

[tex]b=1.5[/tex]

Now, we can put it all together to complete our exponential function:

[tex]y=ab^x[/tex]

[tex]y=15.75(1.5)^x[/tex]

To find the missing values, we just need to evaluate our function at [tex]x=1[/tex] and [tex]x=2[/tex]:

- For [tex]x=1[/tex]

[tex]y=15.75(1.5)^x[/tex]

[tex]y=15.75(1.5)^1[/tex]

[tex]y=23.625[/tex]

- For [tex]x=2[/tex]

[tex]y=15.75(1.5)^x[/tex]

[tex]y=15.75(1.5)^2[/tex]

[tex]y=35.4375[/tex]