What is the area of this triangle? Enter your answer as a decimal in the box. Round only your final answer to the nearest tenth.

The figure contains a triangle. One side is 12 centimeters. A second side is 8 centimeters. The angle between the given sides is 65 degrees.

Respuesta :

xAJHx
ASSUMING THE UNKNOWN IS THE HYPOTENUSE

Area=1/2absinx
Area=1/2(8)(12)sin65
Area=39.7cm^2
Ver imagen xAJHx

Answer:

The area of the triangle is 43.5 cm².

Step-by-step explanation:

Since,  the area of a triangle is,

[tex]A=\frac{1}{2}\times s_1\times s_2\times sin \theta[/tex]

Where, [tex]s_1[/tex] and [tex]s_2[/tex] are adjacent sides and [tex]\theta[/tex] is the included angle of these sides,

Given,

[tex]s_1=12\text{ cm}[/tex]

[tex]s_2=8\text{ cm}[/tex]

[tex]\theta = 65^{\circ}[/tex]

Hence, the area of the given triangle is,

[tex]A=\frac{1}{2}\times 12\times 8\times sin 65^{\circ}[/tex]

[tex]=\frac{96\times 0.90630778703}{2}[/tex]

[tex]=\frac{87.0055475555}2}=43.5027737778\approx 43.5\text{ square cm}[/tex]