Respuesta :
Answer:
[tex]sin (-x) cos (-x) csc (-x) =cos(x)[/tex]
Step-by-step explanation:
We know by definition that the cosine is an even function, therefore
[tex]cos (-x) = cos (x)[/tex]
We also know that the sin is an odd function, therefore
[tex]sin (-x) = -sin (x)[/tex]
By definition:
[tex]cscx = \frac{1}{sinx}.[/tex]
Then:
[tex]csc(-x) = \frac{1}{sin(-x)}.[/tex]
[tex]csc(-x) = -\frac{1}{sin(x)}.[/tex]
Using these trigonometric properties we can simplify the expression
[tex]sin (-x) cos (-x) csc (-x)= -sin(x)cos(x)*(-\frac{1}{sin(x)})\\\\sin (-x) cos (-x) csc (-x)=cos(x)[/tex]
Hello!
The answer is:
The simplified expression is:
[tex]Sin(-x)*Cos(-x)*Csc(-x)=Cos(x)[/tex]
Why?
To simplify the expression we need to use the following trigonometric identities:
[tex]Sin(-x)=-Sin(x)\\Cos(-x)=Cos(x)\\Csc(-x)=-Csc(x)\\Csc(x)=\frac{1}{Sin(x)}[/tex]
We are given the expression:
[tex]sin(-x)*cos(-x)*csc(-x)[/tex]
So, applying the identities and simplifying, we have:
[tex]Sin(-x)*Cos(-x)*Csc(-x)=-Sin(x)*Cos(x)*-\frac{1}{Sin(x)}[/tex]
[tex]Sin(-x)*Cos(-x)*Csc(-x)=Cos(x)*-Sin(x)*-\frac{1}{Sin(x)}[/tex]
[tex]Sin(-x)*Cos(-x)*Csc(-x)=Cos(x)[/tex]
Hence, the simplified expression is:
[tex]Sin(-x)*Cos(-x)*Csc(-x)=Cos(x)[/tex]
Have a nice day!