Answer:
[tex]10^{-p\left(t\right)}=t^{\left(0.5\right)}[/tex]
Step-by-step explanation:
Given equation is [tex]p\left(t\right)=-\log_{10}t^\left(0.5\right)[/tex]
Now question says to write that in exponential form.
So we can use the following conversion formula:
[tex]\log_ca=b\ \Rightarrow c^b=a[/tex]
[tex]p\left(t\right)=-\log_{10}t^\left(0.5\right)[/tex]
[tex]-p\left(t\right)=\log_{10}t^\left(0.5\right)[/tex]
[tex]\log_{10}t^\left(0.5\right)=-p\left(t\right)[/tex]
Apply conversion formula
[tex]p\left(t\right)=-\log_{10}t^\left(0.5\right)\ \Rightarrow 10^{-p\left(t\right)}=t^{\left(0.5\right)}[/tex]
[tex]10^{-p\left(t\right)}=t^{\left(0.5\right)}[/tex]