Respuesta :

Answer:

[tex]10^{-p\left(t\right)}=t^{\left(0.5\right)}[/tex]

Step-by-step explanation:

Given equation is [tex]p\left(t\right)=-\log_{10}t^\left(0.5\right)[/tex]

Now question says to write that in exponential form.

So we can use the following conversion formula:

[tex]\log_ca=b\ \Rightarrow c^b=a[/tex]

[tex]p\left(t\right)=-\log_{10}t^\left(0.5\right)[/tex]

[tex]-p\left(t\right)=\log_{10}t^\left(0.5\right)[/tex]

[tex]\log_{10}t^\left(0.5\right)=-p\left(t\right)[/tex]

Apply conversion formula

[tex]p\left(t\right)=-\log_{10}t^\left(0.5\right)\ \Rightarrow 10^{-p\left(t\right)}=t^{\left(0.5\right)}[/tex]

[tex]10^{-p\left(t\right)}=t^{\left(0.5\right)}[/tex]