Respuesta :

Answer:

Part 1) The measure of arc EHL is [tex]108\°[/tex]

Part 2) The measure of angle LVE is [tex]54\°[/tex]

Step-by-step explanation:

step 1

Let

x-----> the measure of arc EHL

y----> the measure of arc EVL

we know that

The measurement of the outer angle is the semi-difference of the arcs it encompasses.

so

[tex]m<EYL=\frac{1}{2}(y-x)[/tex]

we have

[tex]m<EYL=72\°[/tex]

substitute

[tex]72\°=\frac{1}{2}(y-x)[/tex]

[tex]144\°=(y-x)[/tex]

[tex]y=144\°+x[/tex] ------> equation A

Remember that

[tex]x+y=360\°[/tex] -----> equation B ( complete circle)

substitute equation A in equation B and solve for x

[tex]x+(144\°+x)=360\°[/tex]

[tex]2x=360\°-144\°[/tex]

[tex]x=216\°/2=108\°[/tex]

Find the value of y

[tex]y=144\°+x[/tex]

[tex]y=144\°+108\°=252\°[/tex]

therefore

The measure of arc EHL is [tex]108\°[/tex]

The measure of arc EVL is [tex]252\°[/tex]

step 2

Find the measure of angle LVE

we know that

The inscribed angle measures half that of the arc comprising

Let

x-----> the measure of arc EHL

[tex]m<LVE=\frac{1}{2}(x)[/tex]

we have

[tex]x=108\°[/tex]

substitute

[tex]m<LVE=\frac{1}{2}(108\°)=54\°[/tex]