The pillars in front of Mr. Jefferson's home are shaped like cylinders with a height of 24 ft and a radius of 8 in. What is the lateral area of each pillar

Respuesta :

Answer:

The lateral area is [tex]4,608\pi\ in^{2}[/tex]  or  [tex]32\pi\ ft^{2}[/tex]

Step-by-step explanation:

we know that

The lateral area of a cylinder (pillar) is equal to

[tex]LA=2\pi rh[/tex]

Remember that

1 ft=12 in

Find the lateral area in square inches

we have

[tex]r=8\ in[/tex]

[tex]h=24\ ft[/tex] ----> convert to inches

[tex]h=24*12=288\ in[/tex]

substitute the values

[tex]LA=2\pi (8)(288)[/tex]

[tex]LA=4,608\pi\ in^{2}[/tex]

Find the lateral area in square feet

we have

[tex]h=24\ ft[/tex]

[tex]r=8\ in[/tex] -----> convert to feet

[tex]r=8/12=(2/3)\ ft[/tex]

substitute the values

[tex]LA=2\pi (2/3)(24)[/tex]

[tex]LA=32\pi\ ft^{2}[/tex]