contestada

What sequence is modeled by the graph below?
Coordinate plane showing the points (2,1) (3,2) (4,4) (5,8)

A
an = 2(2)n − 1

B
an = 2( one half )n − 1

C
an = 4(−2)n − 1

D
an = one half (2)n − 1

Respuesta :

ANSWER

[tex]a_n= \frac{1}{2}( {2}^{n - 1} )[/tex]

EXPLANATION

The corresponding ordered pairs from the graph are:

(2,1) (3,2) (4,4) (5,8)

The y-values are:

1,2,4,8

The first term term is the term before 1,this has to be.

[tex]a_1= \frac{1}{2} [/tex]

The common ratio is

[tex]r = \frac{2}{1} = 2[/tex]

The nth term is given by

[tex]a_n=a_1 {(r}^{n - 1} )[/tex]

Let's substitute the values to get,

[tex]a_n= \frac{1}{2} \times {(2}^{n - 1} )[/tex]

This simplifies to,

[tex]a_n= \frac{1}{2} {(2}^{n - 1} )[/tex]