Respuesta :

ANSWER

[tex]g(x) = {x}^{2} + 4x + 4[/tex]

EXPLANATION

The given function is

[tex]f(x) = {x}^{2} - 6x + 9[/tex]

This can be rewritten as:

[tex]f(x) = {(x - 3)}^{2} [/tex]

If this function is shifted 5 units to the left to create g(x), the

[tex]g(x) = f(x + 5)[/tex]

We substitute x+5 into f(x) to get:

[tex]g(x) = {(x + 5 - 3)}^{2} [/tex]

[tex]g(x) = {(x + 2)}^{2} [/tex]

We expand to get:

[tex]g(x) = {x}^{2} + 4x + 4[/tex]

Answer:

g(x) = x^2 + 4x + 4

Step-by-step explanation:

In translation of functions, adding a constant to the domain values (x) of a function will move the graph to the left, while subtracting from the input of the function will move the graph to the right.

Given the function;

f(x) = x2 - 6x + 9

a shift 5 units to the left implies that we shall be adding the constant 5 to the x values of the function;

g(x) = f(x+5)

g(x) = (x+5)^2 - 6(x+5) + 9

g(x) = x^2 + 10x + 25 - 6x -30 + 9

g(x) = x^2 + 4x + 4