Respuesta :

Answer:

[tex]r^2=4\sec 2\theta}[/tex]

Step-by-step explanation:

The given equation is:

[tex]x^2-y^2=4[/tex]

We substitute [tex]x=r\cos (\theta)[/tex] and [tex]y=r\sin (\theta)[/tex] to obtain:

[tex]r^2\cos^2\theta-r^2\sin^2\theta=4[/tex]

This implies that:

[tex]r^2(\cos^2\theta-\sin^2\theta)=4[/tex]

Apply double angle identity to obtain:

[tex]r^2\cos 2\theta=4[/tex]

This implies that:

[tex]r^2=\frac{4}{\cos 2\theta}[/tex]

This simplifies to:

[tex]r^2=4\sec 2\theta}[/tex]

Answer:

The answer is D r^2 cos2(theta) = 4

Step-by-step explanation:

The person above me simplified it too much.