Evaluate the surface integral S F · dS for the given vector field F and the oriented surface S. In other words, find the flux of F across S. For closed surfaces, use the positive (outward) orientation. F(x, y, z) = xzey i − xzey j + z k S is the part of the plane x + y + z = 3 in the first octant and has upward orientation Incorrect: Your answer is incorrect. 9/2

Respuesta :

I'm pretty sure your answer of 9/2 is correct...

Parameterize [tex]S[/tex] by

[tex]\vec s(u,v)=3v(1-u)\,\vec\imath+3uv\,\vec\jmath+3(1-v)\,\vec k[/tex]

with [tex]0\le u\le1[/tex] and [tex]0\le v\le1[/tex].

In case youre' not sure where this came from: recall the standard parameterization for a line segment connecting two points [tex]\vec p_1[/tex] and [tex]\vec p_2[/tex],

[tex]\vec r(u)=(1-u)\vec p_1+u\vec p_2[/tex]

with [tex]0\le u\le1[/tex]. Then treating [tex]\vec r(u)[/tex] as a "point", we can parameterize a plane containing [tex]\vec r(u)[/tex] and another point [tex]\vec p_3[/tex] by using

[tex]\vec s(u,v)=(1-v)\vec p_3+u\vec r(u)[/tex]

with [tex]0\le v\le 1[/tex].

Now, take the normal vector to [tex]S[/tex] to be

[tex]\vec r_v\times\vec r_u=9v\,\vec\imath+9v\,\vec\jmath+9v\,\vec k[/tex]

Then the flux of [tex]\vec F[/tex] across [tex]S[/tex] is

[tex]\displaystyle\iint_S\vec F(x,y,z)\cdot\mathrm d\vec S=\int_0^1\int_0^1\vec F(x(u,v),y(u,v),z(u,v))\cdot(\vec r_v\times\vec r_u)\,\mathrm du\,\mathrm dv[/tex]

[tex]=\displaystyle\int_0^1\int_0^19v(3-3v)\,\mathrm du\,\mathrm dv[/tex]

(since the first two components of [tex]\vec F[/tex] cancel in the dot product)

[tex]=\displaystyle27\int_0^1(v-v^2)\,\mathrm dv=\boxed{\frac92}[/tex]