Answer:
The intensity level of sound 2 is 93.3\ W/m².
Explanation:
Given that,
Intensity of sound 1 = 45.0 W/m²
Intensity level of sound 2 = 3.2 dB
[tex]I_{0}=10^{-12}\ w/m^2[/tex]
We need to calculate the intensity
Using equation of the sound level intensity
[tex]I_{dB}=10 log\dfrac{I}{I_{0}}[/tex]
[tex]I_{dB}=10 log(\dfrac{45.0}{10^{-12}})[/tex]
[tex]I_{dB}=136.5 dB[/tex]
The intensity of sound 2 is greater than 3.2 dB.
Therefore,
[tex]I_{2}=136.5+3.2[/tex]
[tex]I_{2}=139.7\ dB[/tex]
Calculate the intensity of sound 2
[tex]I_{2}=10log(\dfrac{I'}{10^{-12}})[/tex]
[tex]I'=10^{-12}(10^{\frac{139.7}{10}})[/tex]
[tex]I'=93.3\ W/m^2[/tex]
Hence, The intensity level of sound 2 is 93.3\ W/m².