Respuesta :
Answer:
f(x) = 0.2x - 4 (incorrect)
f(x) = 0.5x + 2 (correct)
f(x) = 1/2x + 2 (correct)
y – 3 = 1/2(x – 2) (correct)
y – 1 = 0.5(x + 2)
Step-by-step explanation:
Step 1 : Find two coordinates
(0, 2) (-4, 0)
Step 2 : Find the slope
Slope = m = Y2-Y1/X2-X1
m = 0-2/-4-0
m = -2/-4
m = 1/2 or 0.5
Step 3 : Find the y-intercept
Y-intercept is where the line intersects the y-axis
c = 2
Step 4 : Form the equation y=mx + c
Given Equations and their slope intercept forms:
1) f(x) = 0.2x - 4
This is incorrect because slope is 1/2 or 0.5 and y intercept is 2
2) f(x) = 1/2x + 2
y = 1/2x + 2
This is correct because slope is 1/2 or 0.5 and y intercept is 2
3) f(x) = 0.5x + 2
y= 0.5x + 2 (As m=0.5)
This is correct because slope is 1/2 or 0.5 and y intercept is 2
4) y – 3 = 1/2(x – 2)
Rearranging in slope intercept form:
y-3=1/2x - 1
y = 1/2x-1+3
y = 1/2x + 2
This is correct because slope is 1/2 or 0.5 and y intercept is 2
5) y – 1 = 0.5(x + 2)
y -1 = 0.5x+1
y = 0.5x +1+1
y = 0.5x + 2
This is correct because slope is 1/2 or 0.5 and y intercept is 2
!!
first off, let's notice something on this line, the graph touches the y-axis at 2, namely when x = 0, y = 2, so that's the y-intercept for this line.
now, let's notice something else, as the line moves from x = -4, to the right towards x = 0, the run is 4 units, the rise is 2 units, so its slope is rise/run or 2/4 or 1/2, that said, that gives us an equation of
[tex]\bf y=\cfrac{1}{2}x+2\qquad \impliedby \begin{array}{|c|ll} \cline{1-1} slope-intercept~form\\ \cline{1-1} \\ y=\underset{y-intercept}{\stackrel{slope\qquad }{\stackrel{\downarrow }{m}x+\underset{\uparrow }{b}}} \\\\ \cline{1-1} \end{array}\implies y=0.5x+2[/tex]
[tex]\bf y-3 = \cfrac{1}{2}(x-2)\implies y-3=\cfrac{1}{2}x-1\implies y=\cfrac{1}{2}x+2\qquad \textit{\Large\checkmark} \\\\\\ y-1=0.5(x+2)\implies y-1=0.5x+1\implies y=0.5x+2\qquad \textit{\Large\checkmark} \\\\\\ f(x) = 0.2x-4\qquad \bigotimes[/tex]