Consider the following reaction:Xe(g) 2 F2(g) ⇌XeF4(g)A reaction mixture initially contains 2.24 atm Xe and 4.27 atm F2. If the equilibrium pressure of Xe is 0.34 atm, find the equilibrium constant (Kp) for the reaction

Respuesta :

Answer : The equilibrium constant [tex](K_p)[/tex] for the reaction is, 25.29

Solution : Given,

The given equilibrium reaction is,

                          [tex]Xe(g)+2F_2(g)\rightleftharpoons XeF_4(g)[/tex]

Initially                2.24      4.27         0

At equilibrium    (2.24-x) (4.27-2x)   x

The expression of [tex]K_p[/tex] will be,

[tex]K_p=\frac{(p_{XeF_4})}{(p_{Xe})(p_{F_2})^2}[/tex]

As we are given that,

The partial pressure of Xe at equilibrium = 0.34 atm

That means,

2.24 - x = 0.34

x = 1.9 atm

The partial pressure of [tex]F_2[/tex] at equilibrium = 4.27 - 2x = 4.27 - 2(1.9) = 0.47 atm

The partial pressure of [tex]XeF_4[/tex] at equilibrium = x = 1.9 atm

Now put all the given values in this above expression of [tex]K_p[/tex], we get:

[tex]K_p=\frac{(1.9)}{(0.34)(0.47)^2}[/tex]

[tex]K_p=25.29[/tex]

Therefore, the equilibrium constant [tex](K_p)[/tex] for the reaction is, 25.29