Air at 400 kPa, 980 K enters a turbine operating at steady state and exits at 100 kPa, 670 K. Heat transfer from the turbine occurs at an average outer surface temperature of 315 K at the rate of 30 kJ per kg of air flowing. Kinetic and potential energy effects are negligible

Determine

(a) The rate power is developed, in kJ per kg of air flowing,
(b) The rate of entropy production within the turbine, in kJ per kg of air flowing.

Respuesta :

Answer:

a). [tex]\frac{\dot{W}}{m}= 311[/tex] kJ/kg

b). [tex]\frac{\dot{\sigma _{gen}}}{m}=0.9113[/tex] kJ/kg-K

Explanation:

a). The energy rate balance equation in the control volume is given by

[tex]\dot{Q} - \dot{W}+m(h_{1}-h_{2})=0[/tex]

[tex]\frac{\dot{Q}}{m} = \frac{\dot{W}}{m}+m(h_{1}-h_{2})[/tex]

[tex]\frac{\dot{W}}{m}= \frac{\dot{Q}}{m}+c_{p}(T_{1}-T_{2})[/tex]

[tex]\frac{\dot{W}}{m}= -30+1.1(980-670)[/tex]

[tex]\frac{\dot{W}}{m}= 311[/tex] kJ/kg

b). Entropy produced from the entropy balance equation in a control volume is given by

[tex]\frac{\dot{Q}}{T_{boundary}}+\dot{m}(s_{1}-s_{2})+\dot{\sigma _{gen}}=0[/tex]

[tex]\frac{\dot{\sigma _{gen}}}{m}=\frac{-\frac{\dot{Q}}{m}}{T_{boundary}}+(s_{2}-s_{1})[/tex]

[tex]\frac{\dot{\sigma _{gen}}}{m}=\frac{-\frac{\dot{Q}}{m}}{T_{boundary}}+c_{p}ln\frac{T_{2}}{T_{1}}-R.ln\frac{p_{2}}{p_{1}}[/tex]

[tex]\frac{\dot{\sigma _{gen}}}{m}=\frac{-30}{315}+1.1ln\frac{670}{980}-0.287.ln\frac{100}{400}[/tex]

[tex]\frac{\dot{\sigma _{gen}}}{m}=0.0952+0.4183+0.3978[/tex]

[tex]\frac{\dot{\sigma _{gen}}}{m}=0.9113[/tex] kJ/kg-K