Answer:
0.365 atm is the total pressure in the container at equilibrium.
Explanation:
Given , equilibrium constant of the reaction in terms of partial pressure:[tex]K_p=0.776[/tex]
Initial Partial pressure of the hydrogen sulfide gas = [tex]p_{H_2S}=0.200 atm[/tex]
Let the partial pressure of hydrogen gas and sulfur gas at equilibrium be p.
[tex]H_2S(g)\rightleftharpoons H_2(g)+S(g)[/tex]
Initially 0.200 atm
At eq'm 0.200-p p p
[tex]K_p=\frac{p_{H_2}p_{s}}{p_{H_2S}}[/tex]
[tex]0.776=\frac{p\times p}{(0.200-p)}[/tex]
Solving the equation we will get two values of 'p' from which we will ignore the negative value.
p = 0.165 atm
Partial pressure of the hydrogen sulfide gas at equilibrium= [tex]p_{H_2S}=0.200 atm-p=0.200 atm-0.165 atm =0.035 atm[/tex]
Total pressure in the container at equilibrium :
0.200-p + p + p =0.200 atm +p = 0.365 atm