Respuesta :

Answer:

[tex]\frac{2}{3a^{\frac{1}{3}}}[/tex]

Step-by-step explanation:

[tex]\lim_{x \rightarrow a}\frac{f(x)-f(a)}{x-a}=f'(a)[/tex].

[tex]f(x)=x^\frac{2}{3}[/tex]

Using power rule we get that [tex]f'(x)=\frac{2}{3}x^{-\frac{1}{3}}[/tex]

Evaluating this at [tex]x=a[/tex] gives us: [tex]f'(a)=\frac{2}{3}a^{-\frac{1}{3}}[/tex].

We could write without negative exponent giving us:

[tex]f'(a)=\frac{2}{3a^{\frac{1}{3}}}[/tex].

We could also go about it an algebraic way.

Notice the numerator is a difference of squares and can be factored as [tex](x^\frac{1}{3}-a^\frac{1}{3})(x^\frac{1}{3}+a^\frac{1}{3})[/tex].

We need a factor in the numerator to be [tex]x-a[/tex] so we can get rid of the [tex]x-a[/tex] on bottom and then substitute [tex]a[/tex] for [tex]x[/tex].

Recall the difference of cubes formula:

[tex]p^3-q^3=(p-q)(p^2+pq+q^2)[/tex]

We are going to use this on the denominator:

[tex](x^\frac{1}{3})^3-(a^\frac{1}{3})^3[/tex]

[tex](x^\frac{1}{3}-a^\frac{1}{3})(x^\frac{2}{3}+x^\frac{1}{3}a^\frac{1}{3}+a^\frac{2}{3})[/tex]

So that first factor there will actually cancel with a factor I mentioned for the numerator earlier.

Let's see it all together:

[tex]\lim_{x \rightarrow a}\frac{(x^\frac{1}{3}-a^\frac{1}{3})(x^\frac{1}{3}+a^\frac{1}{3})}{(x^\frac{1}{3}-a^\frac{1}{3})(x^\frac{2}{3}+x^\frac{1}{3}a^\frac{1}{3}+a^\frac{2}{3})}[/tex]

After the cancellation we have:

[tex]\lim_{x \rightarrow a}\frac{(x^\frac{1}{3}+a^\frac{1}{3})}{(x^\frac{2}{3}+x^\frac{1}{3}a^\frac{1}{3}+a^\frac{2}{3})}[/tex]

Now we are ready to replace [tex]x[/tex] with [tex]a[/tex].

[tex]\frac{a^\frac{1}{3}+a^\frac{1}{3}}{a^\frac{2}{3}+a^\frac{1}{3}a^\frac{1}{3}+a^\frac{2}{3}}[/tex]

We have some like terms to combine:

[tex]\frac{2a^{\frac{1}{3}}}{a^\frac{2}{3}+a^{\frac{2}{3}}+a^\frac{2}{3}}[/tex]

[tex]\frac{2a^\frac{1}{3}}{3a^\frac{2}{3}}[/tex]

[tex]\frac{2}{3a^{\frac{2}{3}-\frac{1}{3}}}[/tex]

[tex]\frac{2}{3a^{\frac{1}{3}}}[/tex]