Respuesta :
Answer:
[tex]\Huge \boxed{N=-4}[/tex]
Step-by-step explanation:
To solve this problem, first you have to isolate by the n from one side of the equation. Subtraction property of equality is subtracting both sides of an equation by the same number and it doesn't change the equation.
Given:
Solution:
First, combine like terms. (group like terms or switch sides.)
[tex]\displaystyle n-4n+3=15[/tex]
Next, add numbers from left to right.
[tex]\displaystyle n-4n=-3n[/tex]
[tex]\displaystyle -3n+3=15[/tex]
Then, subtract 3 from both sides.
[tex]\displaystyle -3n+3-3=15-3[/tex]
Solve.
[tex]\displaystyle 15-3=12[/tex]
[tex]\displaystyle -3n=12[/tex]
Now, divide by -3 from both sides.
[tex]\displaystyle \frac{-3n}{-3}=\frac{12}{-3}[/tex]
Solve.
[tex]\displaystyle 12\div-3=\boxed{-4}[/tex]
[tex]\large\boxed{n=-4}[/tex]
Therefore, the solution is n=-4, which is our answer.
Answer and Step-by-step explanation:
[tex]\Huge \boxed{n=-4}[/tex]
Step 1: Simplify both sides of the equation:
[tex]n+3-4n=15[/tex]
[tex]n+3+-4n=15[/tex]
[tex](n+-4n)+(3)=15[/tex] (Combine the like terms)
[tex]-3n+3=15[/tex]
Step 2: Subtract 3 from both sides:
[tex]-3n+3-3=15-3[/tex]
[tex]-3n=12[/tex]
Step 3: Divide both sides by -3:
[tex]\frac{-3n}{-3} \frac{12}{-3}[/tex]
[tex]n=-4[/tex]
Answer: [tex]n=-4[/tex]