What is this function written in vertex form?
The image shows a geometric representation of the
function f(x) = x2 + 2x + 3 written in standard form
f(x) = (x + 2)2 +3
f(x) = (x2 + 2x)2 + 3
f(x) = (x + 1)2 + 2
f(x) = (x + 3)2 + 2%
+X
+
+
+

Respuesta :

Answer:

[tex]f(x) = (x+1)^{2} + 2[/tex]

Step-by-step explanation:

In order to change a quadratic equation to vertex form, you can follow these steps:

quadratic form: [tex]f(x) = x^{2}  +2x +3[/tex]

Transfer 3 to the other side of the equation, so add -3 to both sides of the equation and simplify.

[tex]f(x) -3 = x^{2}  +2x +3 - 3[/tex]

[tex]f(x) -3 = x^{2}  +2x[/tex]

Now if you look at the expression if you add 1 to both sides of the equation you will complete the perfect square trinomial

[tex]f(x) -3 + 1 = x^{2}  +2x + 1[/tex]

[tex]f(x) - 2 = x^{2}  +2x + 1[/tex]

Write the trinomial factors:

[tex]f(x) - 2 = (x + 1)(x  + 1) ---> f(x) + 2 = (x^{2}  + 1)^{2}[/tex]

Finally simplify, clear f(x)

[tex]f(x)  = (x^{2}  + 1)^{2} + 2[/tex]

Now it has the form [tex]f(x) = a(x -h)^{2} + k[/tex]

then (h, k) will be = (-1, 2)

Answer:

c

Step-by-step explanation: