Answer:
Step-by-step explanation:
Given quadratic equation:
[tex]x^{2} + 3x - 8^{- 14} = 0[/tex]
The solution of the given quadratic eqn is given by using Sri Dharacharya formula:
[tex]x_{1, 1'} = \frac{- b \pm \sqrt{b^{2} - 4ac}}{2a}[/tex]
The above solution is for the quadratic equation of the form:
[tex]ax^{2} + bx + c = 0[/tex]
[tex]x_{1, 1'} = \frac{- b \pm \sqrt{b^{2} - 4ac}}{2a}[/tex]
From the given eqn
a = 1
b = 3
c = [tex]- 8^{- 14}[/tex]
Now, using the above values in the formula mentioned above:
[tex]x_{1, 1'} = \frac{- 3 \pm \sqrt{3^{2} - 4(1)(- 8^{- 14})}}{2(1)}[/tex]
[tex]x_{1, 1'} = \frac{1}{2} (\pm \sqrt{9 - 4(1)(- 8^{- 14})})[/tex]
[tex]x_{1, 1'} = \frac{1}{2} (\pm \sqrt{9 - 4(1)(- 8^{- 14})} - 3)[/tex]
Now, Rationalizing the above eqn:
[tex]x_{1, 1'} = \frac{1}{2} (\pm \sqrt{9 - 4(- 8^{- 14})} - 3)\times (\frac{\sqrt{9 - 4(- 8^{- 14})} + 3}{\sqrt{9 - 4(- 8^{- 14})} + 3}[/tex]
[tex]x_{1, 1'} = \frac{1}{2}.\frac{(\pm {9 - 4(- 8^{- 14})^{2}} - 3^{2})}{\sqrt{9 - 4(- 8^{- 14})} + 3}[/tex]
Solving the above eqn:
[tex]x_{1, 1'} = \frac{2\times 8^{- 14}}{\sqrt{9 + 4\times 8^{-14}} + 3}[/tex]
Solving with the help of caculator:
[tex]x_{1, 1'} = \frac{2\times 2.27\times 10^{- 14}}{\sqrt{9 + 42.27\times 10^{- 14}} + 3}[/tex]
The precise value upto three decimal places comes out to be:
[tex]x_{1, 1'} = 0.758\times 10^{- 14}[/tex]