Respuesta :

Answer:

[tex]e^x+xy+3y+(y-1)e^y=4[/tex]

Step-by-step explanation:

Given that

[tex](e^x+y)dx+(3+x+ye^y)dy=0[/tex]

Here

[tex]M=e^x+y[/tex]

[tex]N=3+x+ye^y[/tex]

We know that

M dx + N dy=0 will be exact if

[tex]\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}[/tex]

So

[tex]\frac{\partial M}{\partial y}=1[/tex]

[tex]\frac{\partial N}{\partial x}=1[/tex]

it means that this is a exact equation.

[tex]\int d\left(e^x+xy+3y+(y-1)e^y\right)=0[/tex]

Noe by integrating above equation

[tex]e^x+xy+3y+(y-1)e^y=C[/tex]

Given that

x= 0 then y= 1

[tex]e^0+0+3+(1-1)e^1=C[/tex]

C=4

So the our final equation will be

[tex]e^x+xy+3y+(y-1)e^y=4[/tex]